If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2=79
We move all terms to the left:
16t^2-(79)=0
a = 16; b = 0; c = -79;
Δ = b2-4ac
Δ = 02-4·16·(-79)
Δ = 5056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5056}=\sqrt{64*79}=\sqrt{64}*\sqrt{79}=8\sqrt{79}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{79}}{2*16}=\frac{0-8\sqrt{79}}{32} =-\frac{8\sqrt{79}}{32} =-\frac{\sqrt{79}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{79}}{2*16}=\frac{0+8\sqrt{79}}{32} =\frac{8\sqrt{79}}{32} =\frac{\sqrt{79}}{4} $
| -5(x+2)=-4(x+4) | | 4x-3(x+3)=3/5(5x+3)-10 | | 10n+4=86 | | 3x-5(x-4)=-6+2x+14 | | 2u+47=7(u+6) | | 8+3(3k-4)=-1+3(k+7) | | 4.4=(x)11 | | 4.4=xx11 | | 5x=80-(1÷2) | | 6(y+3)=-2(3y+9) | | 45c-9=5c+7+66c | | 19=4h=1-h | | 43+y+57=180 | | 100x-200=50x-75 | | 2(k+7)+8(k-7)=4k-2-2k | | 4x^-64=17 | | x2-x=56 | | 19=q4+15 | | 3{x+1}=33 | | 8=2(x+2) | | -12+6x=7x-5 | | 6x-6=5x-13 | | 19 = q4+ 15 | | 5x-6=43 | | 3(x-4)=-4+5x | | 0=50+10y-6 | | -23=3x+9 | | 6(q+4)=96 | | 3(1+6k)=-35-k | | -0.47x+0.17x=9.3 | | -5(w-82)=-40 | | 9+18m=m |